\(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{(d+e x)^{5/2}} \, dx\) [2041]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 39, antiderivative size = 181 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{5/2}} \, dx=\frac {2 \left (a-\frac {c d^2}{e^2}\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}}+\frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 e (d+e x)^{3/2}}+\frac {2 \left (c d^2-a e^2\right )^{3/2} \arctan \left (\frac {\sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d^2-a e^2} \sqrt {d+e x}}\right )}{e^{5/2}} \]

[Out]

2/3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/e/(e*x+d)^(3/2)+2*(-a*e^2+c*d^2)^(3/2)*arctan(e^(1/2)*(a*d*e+(a*e^
2+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e^2+c*d^2)^(1/2)/(e*x+d)^(1/2))/e^(5/2)+2*(a-c*d^2/e^2)*(a*d*e+(a*e^2+c*d^2)*x
+c*d*e*x^2)^(1/2)/(e*x+d)^(1/2)

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 181, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {678, 674, 211} \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{5/2}} \, dx=\frac {2 \left (c d^2-a e^2\right )^{3/2} \arctan \left (\frac {\sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d^2-a e^2}}\right )}{e^{5/2}}+\frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 e (d+e x)^{3/2}}+\frac {2 \left (a-\frac {c d^2}{e^2}\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x}} \]

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(d + e*x)^(5/2),x]

[Out]

(2*(a - (c*d^2)/e^2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/Sqrt[d + e*x] + (2*(a*d*e + (c*d^2 + a*e^2)*
x + c*d*e*x^2)^(3/2))/(3*e*(d + e*x)^(3/2)) + (2*(c*d^2 - a*e^2)^(3/2)*ArcTan[(Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a
*e^2)*x + c*d*e*x^2])/(Sqrt[c*d^2 - a*e^2]*Sqrt[d + e*x])])/e^(5/2)

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 674

Int[1/(Sqrt[(d_.) + (e_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[2*e, Subst[Int[1/(
2*c*d - b*e + e^2*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^
2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 678

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((
a + b*x + c*x^2)^p/(e*(m + 2*p + 1))), x] - Dist[p*((2*c*d - b*e)/(e^2*(m + 2*p + 1))), Int[(d + e*x)^(m + 1)*
(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a
*e^2, 0] && GtQ[p, 0] && (LeQ[-2, m, 0] || EqQ[m + p + 1, 0]) && NeQ[m + 2*p + 1, 0] && IntegerQ[2*p]

Rubi steps \begin{align*} \text {integral}& = \frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 e (d+e x)^{3/2}}-\frac {\left (2 c d^2 e-e \left (c d^2+a e^2\right )\right ) \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(d+e x)^{3/2}} \, dx}{e^2} \\ & = \frac {2 \left (a-\frac {c d^2}{e^2}\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}}+\frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 e (d+e x)^{3/2}}+\frac {\left (c d^2-a e^2\right )^2 \int \frac {1}{\sqrt {d+e x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{e^2} \\ & = \frac {2 \left (a-\frac {c d^2}{e^2}\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}}+\frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 e (d+e x)^{3/2}}+\frac {\left (2 \left (c d^2-a e^2\right )^2\right ) \text {Subst}\left (\int \frac {1}{2 c d^2 e-e \left (c d^2+a e^2\right )+e^2 x^2} \, dx,x,\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}}\right )}{e} \\ & = \frac {2 \left (a-\frac {c d^2}{e^2}\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}}+\frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 e (d+e x)^{3/2}}+\frac {2 \left (c d^2-a e^2\right )^{3/2} \tan ^{-1}\left (\frac {\sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d^2-a e^2} \sqrt {d+e x}}\right )}{e^{5/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 137, normalized size of antiderivative = 0.76 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{5/2}} \, dx=\frac {2 \sqrt {a e+c d x} \sqrt {d+e x} \left (\sqrt {e} \sqrt {a e+c d x} \left (4 a e^2+c d (-3 d+e x)\right )+3 \left (c d^2-a e^2\right )^{3/2} \arctan \left (\frac {\sqrt {e} \sqrt {a e+c d x}}{\sqrt {c d^2-a e^2}}\right )\right )}{3 e^{5/2} \sqrt {(a e+c d x) (d+e x)}} \]

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/(d + e*x)^(5/2),x]

[Out]

(2*Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*(Sqrt[e]*Sqrt[a*e + c*d*x]*(4*a*e^2 + c*d*(-3*d + e*x)) + 3*(c*d^2 - a*e^2)
^(3/2)*ArcTan[(Sqrt[e]*Sqrt[a*e + c*d*x])/Sqrt[c*d^2 - a*e^2]]))/(3*e^(5/2)*Sqrt[(a*e + c*d*x)*(d + e*x)])

Maple [A] (verified)

Time = 2.81 (sec) , antiderivative size = 265, normalized size of antiderivative = 1.46

method result size
default \(-\frac {2 \sqrt {\left (c d x +a e \right ) \left (e x +d \right )}\, \left (3 \,\operatorname {arctanh}\left (\frac {e \sqrt {c d x +a e}}{\sqrt {\left (e^{2} a -c \,d^{2}\right ) e}}\right ) a^{2} e^{4}-6 \,\operatorname {arctanh}\left (\frac {e \sqrt {c d x +a e}}{\sqrt {\left (e^{2} a -c \,d^{2}\right ) e}}\right ) a c \,d^{2} e^{2}+3 \,\operatorname {arctanh}\left (\frac {e \sqrt {c d x +a e}}{\sqrt {\left (e^{2} a -c \,d^{2}\right ) e}}\right ) c^{2} d^{4}-c d e x \sqrt {\left (e^{2} a -c \,d^{2}\right ) e}\, \sqrt {c d x +a e}-4 \sqrt {\left (e^{2} a -c \,d^{2}\right ) e}\, \sqrt {c d x +a e}\, a \,e^{2}+3 \sqrt {\left (e^{2} a -c \,d^{2}\right ) e}\, \sqrt {c d x +a e}\, c \,d^{2}\right )}{3 \sqrt {e x +d}\, \sqrt {c d x +a e}\, e^{2} \sqrt {\left (e^{2} a -c \,d^{2}\right ) e}}\) \(265\)

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(5/2),x,method=_RETURNVERBOSE)

[Out]

-2/3*((c*d*x+a*e)*(e*x+d))^(1/2)*(3*arctanh(e*(c*d*x+a*e)^(1/2)/((a*e^2-c*d^2)*e)^(1/2))*a^2*e^4-6*arctanh(e*(
c*d*x+a*e)^(1/2)/((a*e^2-c*d^2)*e)^(1/2))*a*c*d^2*e^2+3*arctanh(e*(c*d*x+a*e)^(1/2)/((a*e^2-c*d^2)*e)^(1/2))*c
^2*d^4-c*d*e*x*((a*e^2-c*d^2)*e)^(1/2)*(c*d*x+a*e)^(1/2)-4*((a*e^2-c*d^2)*e)^(1/2)*(c*d*x+a*e)^(1/2)*a*e^2+3*(
(a*e^2-c*d^2)*e)^(1/2)*(c*d*x+a*e)^(1/2)*c*d^2)/(e*x+d)^(1/2)/(c*d*x+a*e)^(1/2)/e^2/((a*e^2-c*d^2)*e)^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 399, normalized size of antiderivative = 2.20 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{5/2}} \, dx=\left [\frac {3 \, {\left (c d^{3} - a d e^{2} + {\left (c d^{2} e - a e^{3}\right )} x\right )} \sqrt {-\frac {c d^{2} - a e^{2}}{e}} \log \left (-\frac {c d e^{2} x^{2} + 2 \, a e^{3} x - c d^{3} + 2 \, a d e^{2} + 2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d} e \sqrt {-\frac {c d^{2} - a e^{2}}{e}}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right ) + 2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (c d e x - 3 \, c d^{2} + 4 \, a e^{2}\right )} \sqrt {e x + d}}{3 \, {\left (e^{3} x + d e^{2}\right )}}, -\frac {2 \, {\left (3 \, {\left (c d^{3} - a d e^{2} + {\left (c d^{2} e - a e^{3}\right )} x\right )} \sqrt {\frac {c d^{2} - a e^{2}}{e}} \arctan \left (\frac {\sqrt {e x + d} \sqrt {\frac {c d^{2} - a e^{2}}{e}}}{\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}\right ) - \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (c d e x - 3 \, c d^{2} + 4 \, a e^{2}\right )} \sqrt {e x + d}\right )}}{3 \, {\left (e^{3} x + d e^{2}\right )}}\right ] \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(5/2),x, algorithm="fricas")

[Out]

[1/3*(3*(c*d^3 - a*d*e^2 + (c*d^2*e - a*e^3)*x)*sqrt(-(c*d^2 - a*e^2)/e)*log(-(c*d*e^2*x^2 + 2*a*e^3*x - c*d^3
 + 2*a*d*e^2 + 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)*e*sqrt(-(c*d^2 - a*e^2)/e))/(e^2*x^
2 + 2*d*e*x + d^2)) + 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d*e*x - 3*c*d^2 + 4*a*e^2)*sqrt(e*x + d
))/(e^3*x + d*e^2), -2/3*(3*(c*d^3 - a*d*e^2 + (c*d^2*e - a*e^3)*x)*sqrt((c*d^2 - a*e^2)/e)*arctan(sqrt(e*x +
d)*sqrt((c*d^2 - a*e^2)/e)/sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)) - sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*
e^2)*x)*(c*d*e*x - 3*c*d^2 + 4*a*e^2)*sqrt(e*x + d))/(e^3*x + d*e^2)]

Sympy [F]

\[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{5/2}} \, dx=\int \frac {\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {3}{2}}}{\left (d + e x\right )^{\frac {5}{2}}}\, dx \]

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/(e*x+d)**(5/2),x)

[Out]

Integral(((d + e*x)*(a*e + c*d*x))**(3/2)/(d + e*x)**(5/2), x)

Maxima [F]

\[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{5/2}} \, dx=\int { \frac {{\left (c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {3}{2}}}{{\left (e x + d\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(5/2),x, algorithm="maxima")

[Out]

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)/(e*x + d)^(5/2), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 426 vs. \(2 (159) = 318\).

Time = 0.31 (sec) , antiderivative size = 426, normalized size of antiderivative = 2.35 \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{5/2}} \, dx=\frac {2 \, {\left (\frac {3 \, {\left (c^{2} d^{4} {\left | e \right |} - 2 \, a c d^{2} e^{2} {\left | e \right |} + a^{2} e^{4} {\left | e \right |}\right )} \arctan \left (\frac {\sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}}}{\sqrt {c d^{2} e - a e^{3}}}\right )}{\sqrt {c d^{2} e - a e^{3}}} - \frac {3 \, \sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} c d^{2} e^{5} {\left | e \right |} - 3 \, \sqrt {{\left (e x + d\right )} c d e - c d^{2} e + a e^{3}} a e^{7} {\left | e \right |} - {\left ({\left (e x + d\right )} c d e - c d^{2} e + a e^{3}\right )}^{\frac {3}{2}} e^{4} {\left | e \right |}}{e^{6}}\right )}}{3 \, e^{3}} - \frac {2 \, {\left (3 \, c^{2} d^{4} e {\left | e \right |} \arctan \left (\frac {\sqrt {-c d^{2} e + a e^{3}}}{\sqrt {c d^{2} e - a e^{3}}}\right ) - 6 \, a c d^{2} e^{3} {\left | e \right |} \arctan \left (\frac {\sqrt {-c d^{2} e + a e^{3}}}{\sqrt {c d^{2} e - a e^{3}}}\right ) + 3 \, a^{2} e^{5} {\left | e \right |} \arctan \left (\frac {\sqrt {-c d^{2} e + a e^{3}}}{\sqrt {c d^{2} e - a e^{3}}}\right ) - 4 \, \sqrt {c d^{2} e - a e^{3}} \sqrt {-c d^{2} e + a e^{3}} c d^{2} {\left | e \right |} + 4 \, \sqrt {c d^{2} e - a e^{3}} \sqrt {-c d^{2} e + a e^{3}} a e^{2} {\left | e \right |}\right )}}{3 \, \sqrt {c d^{2} e - a e^{3}} e^{4}} \]

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(5/2),x, algorithm="giac")

[Out]

2/3*(3*(c^2*d^4*abs(e) - 2*a*c*d^2*e^2*abs(e) + a^2*e^4*abs(e))*arctan(sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)
/sqrt(c*d^2*e - a*e^3))/sqrt(c*d^2*e - a*e^3) - (3*sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*c*d^2*e^5*abs(e) -
3*sqrt((e*x + d)*c*d*e - c*d^2*e + a*e^3)*a*e^7*abs(e) - ((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(3/2)*e^4*abs(e))
/e^6)/e^3 - 2/3*(3*c^2*d^4*e*abs(e)*arctan(sqrt(-c*d^2*e + a*e^3)/sqrt(c*d^2*e - a*e^3)) - 6*a*c*d^2*e^3*abs(e
)*arctan(sqrt(-c*d^2*e + a*e^3)/sqrt(c*d^2*e - a*e^3)) + 3*a^2*e^5*abs(e)*arctan(sqrt(-c*d^2*e + a*e^3)/sqrt(c
*d^2*e - a*e^3)) - 4*sqrt(c*d^2*e - a*e^3)*sqrt(-c*d^2*e + a*e^3)*c*d^2*abs(e) + 4*sqrt(c*d^2*e - a*e^3)*sqrt(
-c*d^2*e + a*e^3)*a*e^2*abs(e))/(sqrt(c*d^2*e - a*e^3)*e^4)

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{5/2}} \, dx=\int \frac {{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{3/2}}{{\left (d+e\,x\right )}^{5/2}} \,d x \]

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/(d + e*x)^(5/2),x)

[Out]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2)/(d + e*x)^(5/2), x)